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Abstract. We have previously explored various aspects of the real number

system which relate to their algebra and their topology. We now wish to move

towards understanding their measure, and we begin by trying to see more
deeply into their underlying structure by examining some unusual subsets.

1. Open and Closed Sets

1.1. Review of Basic Definitions. Let’s start at the very beginning, a very good
place to start ... recall the definitions.

If A ⊂ R, the complement of A is denoted Ac; that is, Ac = RrA.
We say that G ⊂ R is open if, for every x ∈ G, there exist δ > 0 such that

(x− δ, x+ δ) ⊂ G.
We say that F ⊂ R is closed if F c is open.
We have seen that a set is closed if and only it is equal to its closure, and that

a set is open if and only if it is equal to its interior. We have also seen that the
closure of a set is the intersection of all closed sets which contain it, and that the
interior of a set is the union of all open sets it contains.

Recall the extended real numbers are the set R = R ∪ {±∞} = [−∞,∞]. Any
subset of R has a supremum and an infimum in R.

An interval is a subset of R of one of these forms, where a, b ∈ R:

• Open Interval: (a, b) = {x ∈ R | a < x < b}
• Closed Interval: [a, b] = {x ∈ R | a ≤ x ≤ b}
• Left Semiopen: (a, b] = {x ∈ R | a ≤ x ≤ b}
• Left Semiopen: (a, b] = {x ∈ R | a < x ≤ b}
• Right Semiopen: [a, b) = {x ∈ R | a ≤ x < b}

The order on R gives it a topology, and in this sense, R is homeomorphic to
[0, 1]. A subset of RR is an interval if and only if it is connected and contains more
than one point.

Finally, we will use the fact that a subset of R is compact if and only if it is
closed and bounded.
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1.2. Structure of Open Sets.

Definition 1. Let G ⊂ R be an open set. A component of G is an open interval
(a, b), with a, b ∈ R, such that (a, b) ⊂ G, a /∈ G, and b /∈ G.

Proposition 1. Distinct components of an open set are disjoint.

Proof. Let G be open and let (a1, b1) and (a2, b2) be distinct components of G;
without loss of generality, we may assume that a1 < a2. Suppose that x is a point
in their intersection. Then

a1 < a2 < x < b1.

This shows that a2 ∈ (a1, b1) ⊂ U , contradicting that a2 is the endpoint of a
component. �

Proposition 2. Every open subset of R is a union of countably many disjoint
intervals.

Proof. Let G ⊂ R be open.
Every point in G is in a component of G. To see this, let x0 ∈ G.

a = inf{x ∈ R | [x, x0] ⊂ G} and b = sup{x ∈ R | [x0, x] ⊂ G}.
Claim: (a, b) ⊂ G
Claim: a 6= G and b /∈ G
Claim: There are countably many such components. �

1.3. Structure of Closed Sets.

Definition 2. Let A ⊂ R. The smallest closed interval of A, denoted sci(A), is the
interval [a, b] ⊂ [−∞,∞], where a = inf A and b = supA.

Proposition 3. Let F be a bounded closed set. Let a = inf F and b = supF . Then
sci(F ) = [a, b], and F is of the form

F = [a, b] rG,

where G is a the union of a countable collection of disjoint open intervals contained
in (a, b).
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1.4. Finite Intersection Property.

Definition 3. Let C be a collection of subsets of R.
We say that C is bounded if there exists M > 0 such that C ⊂ [−M,M ] for every

C ∈ C.
We say that C has the finite intersection property if the intersection of every

finite subcollection from C is nonempty.

Proposition 4. Let F be a bounded collection of closed sets with the finite inter-
section property. Then ∩F is nonempty.

Proof. Let X be a bounded closed interval which contains ∪F. We suppose that
∩F is empty; then the collection of complements of sets in F covers X. Since X
is compact, this collection has a finite subcover, say F c

1 , . . . , F
c
n, where Fi ∈ F for

i = 1, . . . , n.
Now X ⊂ ∪ni=1F

c
i = (∩ni=1Fi)

c, and since ∪F ⊂ X, this states that ∩ni=1Fi = ∅.
However, since F has the finite intersection property, ∩ni=1Fi is nonempty, so there
exists an x ∈ ∩ni=1Fi ⊂ X. This contradiction proves the result. �

Proposition 5. Let F = {Fn | n ∈ N} be a collection of nonempty bounded closed
sets such that Fk ⊃ Fk+1. Show that ∩∞n=1Fn 6= ∅.

Proof. Let C be a finite subcollection from F, and let k = max{n ∈ N | Fn}. Then
∩C = Fk, which is nonempty. Thus F has the finite intersection property, and is
thus nonempty by Proposition 4. �



4

1.5. Perfect Sets.

Definition 4. Let A ⊂ R. The derived set of A, denoted A′, is the set of all
accumulation points of A:

A′ = {x ∈ R | every neighborhood of x intersects A }.

We see have seen that every point in A is either an accumulation point of A,
or is an isolated point of A. We note that A′ may be bigger than A; for example,
Q′ = R.

Definition 5. A nonempty set A ⊂ R is dense in itself if every point in A is an
accumulation point of A.

That is, a nonempty set A is dense in itself if and only if A ⊂ A′. Thus, A is
dense in itself if and only if A has no accumulation points.

Definition 6. A nonempty subset F ⊂ R is called perfect if it is closed and dense
in itself.

That is, a nonempty set A is perfect if and only if it is closed and contains no
isolated points. Since a closed set contains all of its accumulation points, we have
A = A′.

The following proof was outlined at

https://mathcs.org/analysis/reals/topo/proofs/pfctuncb.html.

Proposition 6. Let F ⊂ R be a perfect set. Then F is uncountable.

Proof. Since F is perfect, it cannot contain any isolated point. If F were finite,
every point would be isolated, so clearly F is infinite.

We assume by way of contradiction F is countable, and let (xn) be a surjective
sequence of points from F . We define a subsequence of (xn), and a corresponding
sequence of neighborhoods, as follows.

Let k1 = 1. Let U1 = (xk1
− 1, xk1

+ 1). Since xk1
is an accumulation point of

F , there exist infinitely many members of F inside U1. Let k2 = min{n ∈ N | n >
k1 and xn ∈ U1}. Then there exists an open neighborhood U2 of xk2

whose closure
is contained in U1r{xk1}. Again, U2 contains infinitely many points from F , so let
k3 = min{n ∈ N | n > k2 and xn ∈ U2}. Then there exists an open neighborhood
U3 of xk3

whose closure is contained in U2 r {xk2
}.

Continue in this manner, and obtain a sequence of open sets (Ui) such that
Ui ⊂ Ui−1, Ui is an open neighborhood of xki

, and xn /∈ Ui for n < i.
Let Ci = Ui ∩ F . Then C1 ⊃ C2 ⊃ · · · is a decreasing sequence of nonempty

bounded closed sets. Let C = ∩∞i=1Ci. By Proposition 5, C is nonempty; let x ∈ C.
Now if n ∈ N, xn /∈ Un+1, so x 6= xn for any n ∈ N. Thus, F is not countable. �

Can this result be generalized to any topological space?
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1.6. Meager Sets.

Definition 7. Let A ⊂ R. We say that A is nowhere dense if every point of closure
of A is a boundary point of A.

That is, A is nowhere dense if A ⊂ ∂A. Since A = A◦ ∪ ∂A, this implies that A
has no interior points, which implies that A does not contain an interval.

Proposition 7. Let A ∈ R. If A is nowhere dense, then Ac is dense in itself.

Proof. Exercise. �

The converse of the above proposition in not necessarily true. For example, let
A = Q. Then the set of irrational, Qc, is dense in itself, but Q is not nowhere
dense, since Q = R, but the boundary of R is empty.

Definition 8. A nonempty set A ⊂ R is meager, or of the first category, if A is a
union of countably many countable sets.

The following proof combines ideas from Proposition 6 and the textbook Intro-
duction to Real Variable Theory, by Saxena Shah.

Proposition 8 (Baire Category Theorem). The set R is not meager.

Proof. Suppose that R is meager. Then there exist a countable collection A =
{An | n ∈ N} of nowhere dense sets such that R = ∪A. But for each A ∈ A, A ⊂ A,
so

R = ∪∞n=1An ⊂ ∪∞n=1An ⊂ R,
which shows that R = ∪∞n=1An. We now use this characterization to find a point
in R which is not in the union of the closures of the sets in A.

Since A1 is nowhere dense, A1 does not equal R, so there exists a real number
x1 /∈ A1. Moreover, x1 is not a boundary point of the closed set A1, so there exists
an open neighborhood U1 of x1 such that U1 ∩A1 = ∅.

Since A2 is meager, it is impossible that A2 contains the open set U1. So, there
exists x2 ∈ U1 which is not in the closure of A2. Thus, there exists an open
neighborhood U2 of x2 with U2 ⊂ U1 and U2 ∩A2 = ∅.

Continuing in the fashion, we obtain an infinite sequence of points (xn), with
corresponding open neighborhoods (Un), such that Un ⊂ Un−1, and Am ∩ Un = ∅
for m ≤ n.

Let C = ∩∞n=1Un; since each of the sets Un is nonempty, so it the intersection,
by Proposition 5; say x ∈ C. But C is disjoint from every A ∈ A; so x /∈ ∪A. This
shows that ∪A 6= R. Thus, R is not meager. �
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Definition 9. The Cantor set is defined inductively by repeatedly removing the
“open middle third” from a set of intervals, starting with the closed unit interval
[0, 1]. To be precise, set F0 = [0, 1], and for k ≥ 1, let Fk be the set obtained from
Fk−1 by removing the open middle third of each of the maximal intervals in Fk−1.

For example:

• F0 = [0, 1]
• F1 = [0, 1

3
] ∪ [ 2

3
, 1]

• F2 = [0, 1
9
] ∪ [ 2

9
, 1
3
] ∪ [ 2

3
, 7
9
] ∪ [ 8

9
, 1]

• and so forth

This creates a decreasing sequence of sets:

F0 ⊃ F1 ⊃ · · · ⊃ Fk−1 ⊃ Fk ⊃ Fk+1 ⊃ · · · .
The Cantor set is the intersection of this sequence:

C = ∩∞k=0Fk.

Proposition 9. The Cantor set C has these properties:

(a) C is closed and dense in itself, and is therefore perfect
(b) C is uncountable
(c) C is nowhere dense
(d) C is obtained from an interval of length one by removing intervals whose

lengths add to one.

It is this last property we now wish to focus on.

2. Problems

Problem 1. There are two ways to generalize the Cantor set:

• Remove the open middle
1

n

th

from each component, at each stage;

• Remove subintervals of length
1

nk
at stage k.

Try this for n = 4 and see what you get.
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